Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Methanol)\{ $\alpha-5,10,15: \beta$-20-tetrakis[2-(chloroacetamido)phenyl]porphyrin\}zinc(II) chloroform solvate

David Ricard, Philippe Richard* and Bernard Boitrel

LSEO, Faculté des Sciences, 6 Bd Gabriel, 21000 Dijon, France

Correspondence e-mail:
prichard@u-bourgogne.fr

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.069$
$w R$ factor $=0.187$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

The pentacoordinated Zn atom in the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{52} \mathrm{H}_{36} \mathrm{Cl}_{4} \mathrm{~N}_{8} \mathrm{O}_{4}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)\right] \cdot \mathrm{CHCl}_{3}$, is displaced from the porphyrin N_{4} plane towards the axial methanol ligand by $0.269(2) \AA$. The average $\mathrm{Zn}-\mathrm{N}$ (porphyrin) distance is 2.063 (9) \AA and the axial $\mathrm{Zn}-\mathrm{O}(\mathrm{MeOH})$ distance is 2.147 (5) Å.

Comment

Porphyrins are of biological importance and therefore commonly used as building blocks in biomimetic chemistry.

(I)

Very elegant heme protein models have been synthesized to elucidate the mechanism of function of the native enzymes, such as P-450 cytochromes (Sono et al., 1996), dioxygen carriers (Jameson \& Ibers, 1994) or cytochrome c oxidase (Yoshikawa et al., 2000). In the latter case, different porphyrins bearing four pickets on the same side of the porphyrin have been reported and have been shown to be powerful and versatile intermediates (Collman et al., 1994). We recently observed that the spatial arrangement depends not only on the nature of the pickets, but also on the number of pickets per side of the porphyrin (Didier et al., 2001). Additionally, the interactions that the pickets can establish between them via a hydrogen-bonding net may be of prime importance (Ricard et al., 2001). We now report the structure of a zinc(II) porphyrin, (I), bearing three pickets on one side and the fourth on the other side of the porphyrin.

The porphyrin complex crystallizes with a chloroform molecule and an axially coordinated methanol molecule. The porphyrin ring adopts a nearly planar conformation. The

Received 29 June 2001
Accepted 30 July 2001
Online 17 August 2001

Figure 1
View of (I) with 50% probability displacement ellipsoids. The H atoms and the chloroform solvate molecule have been omitted for clarity.
coordination geometry is square pyramidal and the Zn atom is displaced from the N_{4} least-squares plane by 0.269 (2) \AA towards the axial methanol O atom. The mean $\mathrm{Zn}-$ N (porphyrin) distance is 2.063 (9) \AA and the $\mathrm{Zn}-$ O (methanol) distance is 2.147 (5) \AA [the average $\mathrm{Zn}-$ O (methanol) value found for 13 analogous methanol zinc porphyrins is 2.20 (4) \AA].

No intramolecular hydrogen bonds are observed in the crystal. The $\mathrm{O} 5-\mathrm{HO} 5 \cdots \mathrm{O} 2^{\mathrm{i}}$ hydrogen bond $\left[\mathrm{O} 5 \cdots \mathrm{O} 2^{i}\right.$ 2.726 (11), $\mathrm{HO} 5 \cdots \mathrm{O}^{\mathrm{i}} 1.82 \AA$ and $\mathrm{O} 5-\mathrm{HO} 5 \cdots \mathrm{O}^{\mathrm{i}}{ }^{\mathrm{i}} 171.8^{\circ}$; symmetry code: (i) $\left.\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right]$ links the molecules of the complex into infinite chains along the [101] direction.

Experimental

The free base used for the preparation of the title compound was synthesized according to a previously reported procedure (Collman et al., 1997). A 150 ml three-necked round-bottomed flask equipped with a stirrer bar was charged with the $\alpha \alpha \alpha \beta$-atropisomer of 5,10,15,20-tetrakis(2-aminophenyl)porphyrin (TAPP; 337 mg , 0.5 mmol), dry THF (30 ml) and six equivalents of $\mathrm{Et}_{3} \mathrm{~N}$, then cooled in an ice bath, at which time, five equivalents of chloroacetyl chloride in 30 ml of dry THF were injected dropwise. The solution was stirred for 3 h , after which the THF was removed in vacuo. The $\alpha-5,10,15: \beta$ -20-[tetrakis(2-chloroacetamido)phenyl]porphyrin was purified by flash chromatography on a silica column and eluted with 3% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the yield was 73%. The title compound, (I), was obtained by zinc insertion according to the usual method which consists of refluxing a chloroform solution of the free-base porphyrin with a saturated solution of zinc acetate in methanol (Smith, 1975). Crystals suitable for X-ray data collection were obtained by slow (over a three-month period) diffusion of MeOH into a CHCl_{3} solution of compound (I) at room temperature.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{52} \mathrm{H}_{36} \mathrm{Cl}_{4} \mathrm{~N}_{8} \mathrm{O}_{4}\right)-\quad D_{x}=1.541 \mathrm{Mg} \mathrm{m}^{-3}\right.$ $\left.\left(\mathrm{CH}_{4} \mathrm{O}\right)\right] \cdot \mathrm{CHCl}_{3}$
$M_{r}=1195.47$
Monoclinic, $P 2_{1} / n$
$a=13.078$ (6) \AA
$b=17.899$ (7) \AA
$c=22.79(9) \AA$
$\beta=105.009$ (2) ${ }^{\circ}$
Mo K α radiation
$V=5153(21) \AA^{3}$
Cell parameters from 19872 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.90 \mathrm{~mm}^{-1}$
$T=110$ (2) K
Prism, red
$0.25 \times 0.25 \times 0.25 \mathrm{~mm}$
$Z=4$
Data collection
KappaCCD diffractometer
$R_{\text {int }}=0.033$
φ scans ($\kappa=0$) + additional ω scans
19872 measured reflections
$\theta_{\text {max }}=27.5^{\circ}$
11775 independent reflections
7802 reflections with $I>2 \sigma(I)$
$h=-16 \rightarrow 16$
$k=-16 \rightarrow 23$
$l=-29 \rightarrow 29$

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0845 P)^{2}\right.
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$+10.6403 P$]
$w R\left(F^{2}\right)=0.187$
$S=1.04$
11775 reflections
676 parameters
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.27 \mathrm{e} \AA^{-3}$

H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn}-\mathrm{N} 1$	$2.051(5)$	$\mathrm{Zn}-\mathrm{N} 4$	$2.067(4)$
$\mathrm{Zn}-\mathrm{N} 2$	$2.072(3)$	$\mathrm{Zn}-\mathrm{O} 5$	$2.147(5)$
$\mathrm{Zn}-\mathrm{N} 3$	$2.062(7)$		
$\mathrm{N} 1-\mathrm{Zn}-\mathrm{N} 2$	$89.48(13)$	$\mathrm{N} 4-\mathrm{Zn}-\mathrm{N} 2$	$165.12(13)$
$\mathrm{N} 1-\mathrm{Zn}-\mathrm{N} 3$	$164.92(13)$	$\mathrm{N} 1-\mathrm{Zn}-\mathrm{O} 5$	$95.6(3)$
$\mathrm{N} 1-\mathrm{Zn}-\mathrm{N} 4$	$88.84(14)$	$\mathrm{N} 3-\mathrm{Zn}-\mathrm{O} 5$	$99.5(3)$
$\mathrm{N} 3-\mathrm{Zn}-\mathrm{N} 2$	$88.68(13)$	$\mathrm{N} 4-\mathrm{Zn}-\mathrm{O} 5$	$98.35(13)$
$\mathrm{N} 3-\mathrm{Zn}-\mathrm{N} 4$	$89.11(14)$	$\mathrm{N} 2-\mathrm{Zn}-\mathrm{O} 5$	$96.52(12)$

H atoms were inserted at calculated positions or found in the difference electron-density map (for those of the methanol molecule and those of the amide groups) and treated in the riding model approximation with isotropic displacement parameters set to 1.2 times those of the parent atoms. The highest residual electron-density peak was located near the Cl 6 atom of the chloroform solvent molecule.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Financial support from the CNRS and the Région de Bourgogne is gratefully acknowledged. DR is indebted to the MENRT for his grant.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Collman, J. P., Boitrel, B., Fu, L., Galanter, J., Straumanis, A. \& Rapta, M. (1997). J. Org. Chem. 62, 2308-2309.

Collman, J. P., Zhang, X., Herrmann, P. C., Uffelman, E. S., Boitrel, B., Straumanis, A. \& Brauman, J. I. (1994). J. Am. Chem. Soc. 116, 2681-2682.
Didier, A., Michaudet, L., Ricard, D., Baveux-Chambenoît, V., Richard, P. \& Boitrel, B. (2001). Eur. J. Org. Chem. 10, 1917-1926.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Jameson, G. B. \& Ibers, J. A. (1994). In Bioinorganic Chemistry, edited by I. Bertini, H. B. Gray, S. J. Lippard \& J. S. Valentine, pp. 167-251. Mill Valley, California: University Science Books.
Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Ricard, D., L'Her, M., Richard, P. \& Boitrel, B. (2001). Chem. Eur. J. In the press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, K. M. (1975). In Porphyrins and Metalloporphyrins. Amsterdam: Elsevier Scientific Publishing Compagny.
Sono, M., Roach, M. P., Coulter, E. D. \& Dawson, J. H. (1996). Chem. Rev. 96, 2841-2887.
Yoshikawa, S., Shinzawa Itoh, K. \& Tsukihara, T. (2000). J. Inorg. Biochem. 82, 1-7.

